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• RBD is a graphical 
representation of the 
arrangement of system 
components regarding their 
influence on the system 
reliability.
• An RBD demonstrates the 

effect of the success or 
failure of a component on the 
success or failure of the 
whole system.
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Series: all components must be operational 

Parallel: at least one of the 
components must be operational



•Given a survival function 
Ri(t) for each block:
⁃ Pr(Xi(t) = Fault Free) = Ri(t) 
⁃ Pr(Xi(t) = Faulty) = 1 − Ri(t)

• Example:
⁃ How to evaluate Mean Time 

To Failure:

Reliability Block Diagrams
Evaluate the Resiliency
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• Markov chains (MCs) are 
stochastic processes whose 
futures are conditionally 
independent of their pasts 
given their present values.
• In practical terms, for each 

component of the system is 
accounted with all its possible 
states to compose a 
Transition Diagram describing 
the Full System Reliability 
behavior.

Markov Chains
Basic System Composition

State Component 1 Component 2

1 Fault-Free Fault-Free

2 Fault-Free Faulty

3 Faulty Fault-Free

4 Faulty Faulty
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• A Cross-Layer Model must:
1. Enumerate all possible HW 

faults
2. Enumerate all SW states that 

might happen due to an HW 
fault

3. Enumerate all 
Failure/NonFailure states of 
the system

• Then, characterize each state 
with proper transitions (and 
probability of moving along the 
transition) in order to define the 
full model.

Markov Chains
Cross-Layer Resilience Evaluation

Picture from: Teng X, Pham H, Jeske DR. Reliability Modeling 
of Hardware and Software Interactions, and Its Applications. 
IEEE Transactions on Reliability. 2006 Dec;55(4):571–577 



• The Resilience can then be 
evaluated by calculation of 
the Probability of being in 
all “fault-free” states at time 
t.

Markov Chains
Cross-Layer Resilience Evaluation

Picture from: Teng X, Pham H, Jeske DR. Reliability Modeling 
of Hardware and Software Interactions, and Its Applications. 
IEEE Transactions on Reliability. 2006 Dec;55(4):571–577 

R(t) = P0(t) + P1a(t) + P1b(t) + P1c(t)

MTBF =
1

1�R(t)



• Bayesian Networks (BN) are 
stochastic models, defined as 
a Directed Acyclic Graph 
(DAGs) where:
⁃ Nodes are random variables 

(say components) that can 
assume different states.

⁃ Edges are the relationship of 
dependence between nodes 
(destination depends from its 
sources)

Bayesian Networks
Basic Concepts

Each node is provided by a Conditional Probability 
Table (CPT): it defines the conditional probabilities of 
the node with respect to the state of its parents.
When the node has no parents the CPT represents 
the marginal probability distribution for the states.



• The evaluation of a 
Bayesian network is the 
computation of the 
probabilities for each node 
of being in every possible 
states.

Bayesian Networks
Evaluation

P (n1, n2, · · · , nm) =
mY

i=1

P (ni|parents(ni))

Bayesian Network Belief Update



• RBDs

⁃ Pros: Component based modeling
⁃ Cons: Too simple description of the propagation

• MCs

⁃ Pros: Recovery policies as part of the modeling
⁃ Cons: System State based modeling, limited time dependence

• BNs

⁃ Pros: Component based modeling, complex chaining of events
⁃ Cons: no easy recovery mechanisms management due to DAG properties

Pros and Cons
What is best for Cross-Layer Resilience Evaluation?



BAYESIAN CROSS-LAYER Tools
A full framework from components characterization to system optimization

Technology 
Characterization 
Tools

CPU/GPU 
Characterization 
Tools

Software 
Characterization 
Tools

Component Characterization System Reliability Analyzer (SyRA) Reliability Design Optimizer (ReDO)

[Vallero et al. TOC’18] [Savino et al. TOC’18] 
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BAYESIAN CROSS-LAYER ANALYSIS
System Reliability Analyzer (SyRA)

Technology 
Characterization 
Tools

CPU/GPU 
Characterization 
Tools

Software 
Characterization 
Tools

Component Characterization

[Vallero et al. TOC’18] 

The output of the model is a 
set of resiliency metrics for 
the system computed by 
means of Bayesian inference.

The core of the model is a 
Bayesian network that 
represents how soft errors 
propagate through the layers 
of the system
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1. MiBench
1. ss: Stringsearch
2. s_(x): Susan (smoothing, edges, corners)
3. aes:  AES
4. qs: Qsort
5. ff: FFT
6. sha: Sha

2. Custom
1. rta: control application from the avionic 

domain (IP)
2. bm: bare metal application for DC motor 

controllers (IP)
3. hpc: open source software to solve hyper-

bolic equations on dynamically changing 
fully-adaptive conforming 2D triangular 
grids (from: 
https://www5.in.tum.de/sierpinski/index.p
hp)

10  

 

It consists on a repeated execution of the target analysis (e.g., 
AVF computation) by randomly sampling at each iteration all 
conditional probabilities within their error margins. The pro-
posed Monte Carlo analysis enables to understand how the reli-
ability metric is distributed based on the uncertainty of the pa-
rameters of model. The sampling process for each column of a 
generic cpt with three possible states is reported in Fig. 7.  

 
Fig. 7. Sampling process of one column of a cpt 

The procedure starts from the measured probabilities for each 
state (a). The probabilities are scaled to consider that there is a 
certain uncertainty due to the error margin of each measure (b). 
Several samples for the same column are then generated ran-
domly assigning portions of the error margin area to the possible 
states (c). This procedure is repeated for each column of the cpt 
and for all tables of the network. 

4 EXPERIMENTAL RESULTS 
This section describes a set of experiments to show how SyRA 
can be used to analyze the resilience of complex microprocessor-
based systems to soft error.  

4.1 Experimental design 
Each use-case considered in this experimental setup is a micro-
processor-based system. The characteristics of the selected use-
cases are:  

• Hardware architecture: three relevant out-of-order su-
perscalar microprocessor architectures are considered: 
(i) ARM Cortex-A9 (A9), (ii) ARM Cortex-A15 (A15) 
and (iii) Intel-like i7-skylake (x86). Table 2 reports their 
relevant architectural parameters.  

• Operating system: a mix of bare-metal and Linux appli-
cations.  

• Application software: eight benchmarks from the 
MiBench1 suite [10], two realistic industrial applications 
and one open-source HPC application.  

The first industrial application is a control application from 
the avionic domain (rta). It is a real-time application with differ-
ent activation periods for different tasks running on the Linux 

 
1 (1) string search (ss), (2) susan image smoothing (s_s), (3) susan image edge 

detection (s_e), (4) susan image corner algorithm (s_c), (5) rijndael encoding per-
forming AES encryption (aes), (6) quick sort (qs), (7) Fast Fourier Transform (ff), 

operating system. It comprises about 16K lines of C code includ-
ing 567 functions. The second industrial application (bm) is a 
bare metal application for DC motor controllers. It comprises 
about 3K lines of C code including 14 functions. Finally, the third 
realistic application is an open source software to solve hyper-
bolic equations on dynamically changing fully-adaptive con-
forming 2D triangular grids (hpc2). It is used in applications 
such as simulations of the propagation of a tsunami waves over 
the sea. With about 300K lines of C code and 419 functions this 
represents a very complex application able to stress the scalabil-
ity of SyRA. 

TABLE 2 
Single-core hardware architecture parameters 

 A9 A15 X86 

L1 I/D 32KB 32KB 32KB 
L2 512KB 1MB 1MB 
RF 56 32bit reg 128 32bit reg 168 64bit reg 
SQ 8 32bit reg 16 32bit reg 72 64bit reg. 

Tech. Node 65/45nm 32/28nm 14 nm FinFET 
Clock 0.8-2GHz 1-2GHZ 4GHz 

 
For all fault-injection campaigns, at all layers, we use statisti-

cal fault sampling as described in [9] in order to reach a 5% error 
margin with 99% confidence level for all estimated parameters. 
Finally, to account for the uncertainty of the model we per-
formed Monte Carlo simulation as described in Section 3.3 with 
100,000 samples.  

4.2 Reliability analysis 
To show the capabilities of SyRA, we start by assessing the ac-
curacy of the estimated reliability metrics. Fig. 8 compares, for 
each use-case, the /R;x computed with our model to the one 
computed with a full micro-architectural statistical fault injec-
tion campaign. We selected /R;x for the comparison since it is 
the main metric on which the other metrics are based. Micro-
architectural fault injections are performed using GeFIN [21]. 
GeFIN is a micro-architecture level fault injector used in previ-
ous studies for reliability assessment [21][38][39][40][42][53]. 
Microarchitecture-level injection (to which we compare SyRA in 
terms of speed and accuracy) is a good reference for measuring 
the AVF or FIT rate of the memory arrays considered in this 
study since they are precisely modeled in the Gem5 simulator 
on which GeFIN is based. Moreover, GeFIN allows us to run the 
applications on top of a real operating system thus emulating a 
complete and realistic execution environment.  

In Fig. 8, all applications except hpc are analyzed on A9. Hpc 
is analyzed on x86 since it cannot be executed on a low-end pro-

(8) Secure Hash Algorithm (sha). 
2 https://www5.in.tum.de/sierpinski/index.php  
 

 
Fig. 8. Comparison of /R;x	estimated with SyRA and GeFIN considering the joint contribution of RF, L1D, L1I, L2, SQ. 
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BN Building and Analysis Time
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BAYESIAN CROSS-LAYER ANALYSIS
RTL fault injection vs BN (Accuracy)

[Chatzidimitriou et al. DSN’17] [Vallero et. al IEEE TOC’18]
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BAYESIAN CROSS-LAYER ANALYSIS
RTL fault injection vs BN Time

ss (A9) s_s (A9) s_e (A9) s_c (A9) aes (A9) qs (A9) ff (A9) sha (A9) rta (A9) bm (A9)
RTL (days) 1,83 27,32 26,73 31,16 12,63 96,54 214,08 104,61 1320,98 13,42
SyRA (days) 0,08 0,59 0,17 0,14 1,00 0,37 1,47 0,28 1,17 0,09
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BAYESIAN CROSS-LAYER ANALYSIS
Microarchitectural Level Fault Injection vs BN (Accuracy)

[Vallero et al. ITC’16] [Vallero et. al IEEE TOC’18]~2000 uA injections per block

5% error margin

99% CI
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BAYESIAN CROSS-LAYER ANALYSIS
Microarchitectural Level Fault Injection vs BN Time

ss (A9) s_s (A9) s_e (A9) s_c (A9) aes (A9) qs (A9) ff (A9) sha (A9) rta (A9) bm (A9) hpc (x86)

GeFIN (hours) 5 42 9 7 87 70 119 25 101 8 585

SyRA (hours) 2 14 4 3 24 9 35 7 28 2 172
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Model Analysis (Bayesian 
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BAYESIAN CROSS-LAYER DSE
Reliability Design Optimizer (ReDO)

Reliability Design Optimizer (ReDO)

Characterized 
Components 

Library

Characterized 
Protection 
Techniques

EO Based 
Optimization Engine 

Optimized system
AVF Power Area

Combines reliability metrics with other design parameters (e.g., power 
consumption and area) to enable multi-objective optimization

Local modifications remove low-quality components, replacing them with 
randomly selected new components

Extremal Optimization (EO) is an evolutionary optimization heuristic that  
evolves a single solution through local modifications (no need to store large 

populations of possible solutions) 

Takes advantage of the component-based Bayesian Reliability Model to 
identify weak components without long simulations (Bayesian Inference)



BAYESIAN CROSS-LAYER DSE
Optimization Strategy

[Savino et al. TOC’18] 
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BAYESIAN CROSS-LAYER DSE
Trajectory of design space exploration

[Savino et al. IEEE TOC’18] AVF trajectory when performing DSE for best AVF. 

HPC app

Linux



BAYESIAN CROSS-LAYER DSE
Multi objective-design space exploration
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[Vallero et al. IEEE TOC’18] [Savino et al. IEEE TOC’18] SyRA diagnostic analysis for the hpc benchmark. Gray dots show the AVFs 
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worst-case component identified through SyRA diagnostic analysis. The green dot represents the best system.  
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BAYESIAN CROSS-LAYER DSE
MiBench: AVF improvements
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BAYESIAN CROSS-LAYER DSE
MiBench: Number of iterations before best solutions
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hours required to generate the model of the initial solution (and all alternative clusters) 
and to perform the DSE process. 
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Stochastic Models
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Bayesian Cross-Layer DSE

Conclusions and perspectives



• Resiliency is a critical vector for the whole compute continuum

• Look for solutions that synergize with other design dimensions to 
reduce the resiliency “tax”

• Better industry support for cross layer resiliency

⁃ Open standards for HW/SW tunable reliability management structures
⁃ EDA tools for fast early reliability analysis
⁃ Challenging from a business perspective but there is precedent for success 

here…
⁃ Fosters sharing and openness in a typically closed area of technology…

CONCLUSIONS
Closing remarks and future perspectives



CONCLUSIONS
Closing remarks and future perspectives

@Test.Group.Polito

https://www.testgroup.polito.it

@TestGroupPolito



Questions?
Διαφορετικά, ας πίουμε τσίπουρο


